
Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

Topic-based Vector Space Model

Jörg Becker
Dept. of Information Systems

Leonardo-Campus 3
48149 Münster; Germany

becker@wi.uni-muenster.de

Dominik Kuropka
Dept. of Information Systems

Leonardo-Campus 3
48149 Münster; Germany

isdoku@wi.uni-muenster.de

Abstract

This paper motivates and presents the Topic-based
Vector Space Model (TVSM), a new vector-based
approach for document comparison. The approach does
not assume independence between terms and it is flexible
regarding the specification of term-similarities. Stop-
word-list, stemming and thesaurus can be fully integrated
into the model. This paper shows further how the TVSM
can be fully implemented within the context of relational
databases. This facilitates the use of this approach by
generic applications. At the end short comparisons with
other vector-based approaches namely the Vector Space
Model (VSM) and the Generalized Vector Space Model
(GVSM) are presented.

1. Motivation

Information filtering (IF) systems are designed for
permanently scanning document streams (e. g. news-
ticker or Usenet). They identify potentially important or
interesting documents for users by classifying them. For
designers of IF systems the conceptualization of user
profiles is a great challenge. For each user a profile has to
be defined. This profile determines criteria which are
utilized for user-specific classification of documents.

One approach (the explication approach) is the
definition of a formalized language which is utilized by
the user to describe his profile. This approach has been
implemented in the IF prototypes Rama [Binkley 1991],
Borges V2 [Smeaton 1996] and Sift [Yan 2000]. The
main problem with this approach is that users are often
not capable of specifying their information demand
properly. There are two main reasons for this: Firstly, it is
difficult for a user to explicate required criteria. Secondly,
the formalized language has to be powerful enough to
deal with the challenges of natural language processing
like flexions of words1, synonyms2 and polysems3. Addi-

1 Words may appear in different forms like singular or plural
depending on their use within a text (e. g. “house” and “houses”).

tionally, it should be powerful enough to allow complex
expressions (e. g. using Boolean operators like “or”,
“and”, “not”, etc.). On the one hand this leads to a huge
amount of time the user needs to master the language in
case it is very powerful. On the other hand the filtering
results of the IF system will be deficient if the language is
easy to use but not powerful enough.

One solution of this dilemma is the use of an adaptive
approach. The idea is to present some evaluated
documents to the IF system and to let it generate the user
profile on its own. As a side-effect the system can
improve the user profile continuously if the user himself
gives a feedback on misclassified documents. This
approach has already been implemented in NewsSIEVE
[Haneke 2001] and PI-Agent [Kuropka 2001] systems.
NewsSIEVE adapts the user profile by using evolutionary
algorithms while the PI-Agent uses neuronal networks.
Both approaches have in common that the initial
information about user profiles (= training set) are
transformed into an internal representation (e. g. neuron
weights in case of a neuronal network) which makes the
profile representation difficult to understand for users. So
the system is not able to explicate its classification rules
in a user-friendly way. This leads to the following
problems: Firstly, the user has to rely on the classification
given by the IF system without knowing how the
classification is done in detail. Secondly, in case the
user’s information demand shifts from one day to another
or the system is unable to adapt his information demand,
it is impossible for him to make reasonable corrections on
his profile. Consequently, the user has to wait until the
system has corrected his profile automatically.
Meanwhile, a lot of documents may be misclassified.

Our intention is the use of a case-based approach for
defining user profiles. This means, the user defines his
profile by presenting some evaluated documents to the
system, like in the adaptive approach. In contrast to the

2 Synonyms are different words (e. g. “automobile” and “car”) with

the same meaning.
3 Depending of the context a word could have different meanings

(e. g. “mouse” can stand for a small rodent or for a computer input
device).

8 BUSINESS INFORMATION SYSTEMS – BIS 2003

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

adaptive approach this initial profile information is not
transformed into some kind of internal representation.
New documents are classified by adopting the classifi-
cation of the most similar documents from the user
profile. A simple adoption of user profiles can be
implemented this way: Every time the system has mis-
classified a document, user corrected evaluations of
documents are added to the profile. The benefit of this
approach is the possibility to understand the profile,
because it is just an set of evaluated documents. By
removing evaluated documents or by inserting new
evaluated documents reasonable corrections on the profile
are possible. The following aspects should be considered
when implementing case-based approaches:
a) Document similarity: A similarity function is

necessary to determine the similarities between old
and new cases. The “cases” here are documents.
Therefore, some kind of document similarity function
is needed. This function will be derivated from a
theoretical foundation which is presented in section 2
in detail.

b) Document classification: For document classification
we propose the use of k-Nearest Neighbour classifi-
cation (kNN). This is a simple method. If you insert a
test document into the system, the system finds the k
nearest neighbours among the profile documents. It
uses the categories of the k neighbours to weight the
category of the test document. Referring to the
examination of YANG and LIU, the kNN (using the
cosine similarity on document vectors) is one of the
best methods for text categorization [Yang 1999]. This
paper describes our work which is still in progress. At
present, we do not have enough qualified data to run
optimizations on parameters of the kNN. Thus, the
kNN is future work and will not be discussed in this
paper in more detail.

c) Efficient processing of huge amounts of persistent
data: The IF system should work reliable for several
news sources as well as for a large amount of users.
Further requirements are: Every user should have an
own profile which supports several classification
schemes (e. g. classification by importance or by
topic). Reliability determines persistency of data. The
other requirements entail the possibility of storing and
processing a huge amount of data (documents, user
profiles, natural language depending data and ad-
ministrative data). Databases are optimized for pro-
cessing huge amounts of data and they can be used
effectively if the main part of data is processed within
the database. Section 3 will show how the document

similarity function can be fully implemented within
the context of a relational database using the
Structured Query Language (SQL) [ISO 1992].

d) Optimized adoption of user profiles: The simple
adoption method described above adds all documents
(and their affiliation to a class) to the user profile,
which have been misclassified by the system. On the
long run this leads to two problems: Firstly, the user
profile extends without any limit. This reduces the
classification performance. Secondly, the system is
not able to “forget” anything adopted. This makes an
adoption of changes of user’s information demand
impossible. Therefore, it is necessary to develop some
kind of reorganisation and garbage collection
methods. Qualified data is advantageous for the
development of an optimized adoption method. This
point belongs to future work and will not be discussed
in this paper in more detail.

2. Development of the model

This section introduces the Topic-based Vector Space
Model (TVSM). Relations to other vector-based models,
in particular the Vector Space Model (VSM) [Salton
1968; Baezea-Yates 1999, pp. 27-30] and the Generalized
Vector Space Model (GVSM) [Wong 1987; Baezea-Yates
1999, pp. 41-44], are discussed in section 4.

2.1 Topic-based Vector Space

The basic premise of the TVSM is the existence of a d
dimensional space R which only has positive axis-
intercepts:

dR 0≥∈ R with 0>∈ Nd (1)
Interpretation of R: Each dimension of R represents a

fundamental topic. It is assumed that all fundamental
topics are independent from each other (= orthogonal).
The precise number of fundamental topics d has no
further relevance for the TVSM. Therefore, there is no
need to specify this number in more detail.

A Term },,1{ ni ∈ is represented by a term-vector it
and has a term-weight between one and zero. The term-
weight is defined as the algebraic length of the term-
vector it :

Rtttt idiii ∈=),...,,(21 (2)

with]1;0[... 22
2

2
1 ∈+++= idiii tttt

TOPIC-BASED VECTOR SPACE MODEL 9

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

Figure 1 illustrates the interpretation of term-vectors:
Topic specific terms (e. g. “program”, “software” and
“Goethe”) point into the same direction as their
fundamental topic which they are related to. In case a
term combines two or more fundamental topics (due to
visualisation limits this case is not shown in figure 1) it
points into a combined direction of the two or more
fundamental topics. Terms which are not topic specific at
all (e. g. “is” or “the”) have a term-vector which has an
angle near 45° towards all fundamental topics of the space
R. The term-weight represents the relevance of a term
concerning its applicability to derive information about its
relation to a topic in general. Term-weights are near to
value one for topic specific terms and near to value zero
for unspecific terms.

We premise that the following data is known for all
terms },,1{, nji ∈ :
• Term-weight for each term i:]1;0[∈it
• Term-angle between each term i and j:]90;0[°°∈ijω
Using the data the scalar product ji tt can be deduced as:

)cos(ijjiji tttt ω⋅⋅= (3)

2.2 Document definition

In the TVSM a document },,1{ mk ∈ is represented
by a document-vector Rdk ∈ which vector-length is
standardized to the length of value one for better
comparison:

1 1 =⇒= kk
k

k dd δ
δ

(4)

with ∑
=

=
n

i
ikik te

1

δ

while =kie number of occurrences of
term i in document k.

2.3 Similarity of documents

The similarity between two documents k and l is
defined as the scalar product of the document-vectors,
which is equal to the cosine of the angles between the
document-vectors:

)cos()cos(klkllklk dddd ωω =⋅⋅= (5)

because 1== lk dd
This similarity measure has the following properties:

]1;0[∈lk dd and kllk dddd = and 1=kk dd (6)
With the knowledge of term-weights and term-angles, the
similarity between two documents can be computed as
follows:

lk dd
l

l
k

k

δ
δ

δ
δ

11= (7)

∑∑
= =⋅

=
n

i

n

j
jiljki

lk

ttee
1 1

1
δδ

The length of the unnormed document-vectors kδ and lδ
can be computed as follows (here only shown for kδ):

kδ ∑
=

=
n

i
ikite

1

(8)

2

1
)(∑

=

=
n

i
ikite

∑∑
= =

=
n

i

n

j
jikjki ttee

1 1

Calculation complexity for term similarity is low enough
to enable an implementation in SQL. This facilitates a
database-optimized computation of document similarities
within a relational database as shown in section 3.

2.4 Ideal term-weights and -angles

Term-weights it should have the following character-
istics in order to ensure good behaviour of the similarity
function:
• Terms which can be used as credible topic indicators

for documents (e. g. technical terms) should have a
term-weight near value one.

• Terms which do not have a relation to a topic (e. g. the
so-called stopwords “is”, “a”, “the”, etc.) should have
a term-weight near or equal value zero. Weighting
stopwords by value zero allows the integration of a
classic stopword-list into the TVSM.

The angle ijω between two terms should follow these
rules:
• 0=iiω
• jiij ωω =

1

10 topic: computer

topic: literature

program
software

Goethe

is
the

Figure 1. Interpretation of term-vectors

10 BUSINESS INFORMATION SYSTEMS – BIS 2003

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

• The angle between two terms which have the same
stem (e. g. “house” and “houses”) should have zero
degrees. This integrates the idea of stemming into the
TVSM.

• The angle between two synonyms or between two
words from a similar topic should have a value near
zero degrees. This integrates the concept of a
thesaurus into the TVSM.

• The angle between two terms from different topics
should have a value near 90 degrees.

• The angle between terms which are credible topic
indicators and terms without relation to a topic
(stopwords) should have a value near 45 degrees.

• The angle between two terms without relation to a
topic (stopwords) should have a value near zero.

2.5 Estimation of term-weights and -angles

A manual setting of all term-weights and term-angles
is not efficient because of the high amount of terms and
the even higher amount of angles. We used the following
estimation for our first experiment:

Assumption: All terms which occur in more than 50%
of the documents are not useful for any kind of
classification. Thus, term-weights for these terms are set
to value zero which implies that the scalar product of
these terms in relation to other terms is also zero.

Assumption: Terms which occur in less than 1% of the
documents do not provide enough data to calculate a
reliable estimation on term relations. Therefore, these
terms are treated as orthogonal to all other terms.
Consequently, °= 90ijω for all ji ≠ . The term-weights
for these terms are set to value one.

The term-weights for all other remaining terms are set
to value one while the angles are set to the following
values:

else
0´)´,Corr(if

90

´)´,Corr(9090 ≥





°
⋅°−°

= jiji
ij

TTTT
ω

´)´,Corr(ji TT is the empirical correlation of terms i and j
within a document base.

The estimation of term-weights and -angles can be
improved by using explicit information about the natural
language of the documents and by using explicit infor-
mation about semantic coherence of words. The following
improvements should be investigated in the future
regarding their influence on classification quality:
• A stopword-list should be used to assign a null value

as weight to all stopwords.
• A stemming-list or a stemming-algorithm should be

used to assign a null-value to all angles between two
words with the same stem.

• Term-angles reflecting semantic coherence of words
could be derived from a thesaurus, a semantic web or
from a formalized ontology.

3. Database model

3.1 Schema definition

The TVSM has been tested by implementing it in a
relational database using the following statements (we
assume that an index on all unique or primary key
attributes is automatically created by the database):

CREATE TABLE document (
 id INTEGER UNIQUE NOT NULL,
 length DOUBLE PRECISION DEFAULT NULL;
 text TEXT NOT NULL,
 PRIMARY KEY(id));

CREATE TABLE term (
 id INTEGER UNIQUE NOT NULL,
 text TEXT UNIQUE NOT NULL,
 weight DOUBLE PRECISION DEFAULT NULL,
 PRIMARY KEY(id));

CREATE TABLE doc_term_ass (
 document INTEGER NOT NULL
 REFERENCES document(id),
 term INTEGER NOT NULL
 REFERENCES term(id),
 quantity INTEGER NOT NULL,
 PRIMARY KEY(document, term));
CREATE INDEX doc_term_ass_term_document_idx
 ON doc_term_ass (term, document);

CREATE TABLE skalarproduct (
 term1 INTEGER NOT NULL
 REFERENCES term(id),
 term2 INTEGER NOT NULL
 REFERENCES term(id),
 value DOUBLE PRECISION NOT NULL,
 PRIMARY KEY(term1, term2));

Table “document” stores text as well as unnormed
document-vector length

kδ of the documents. Table

“term” stores all terms and their term-weights it .
Documents and terms are connected by “doc_term_ass”
which also stores the number of occurrences of a term
within a document. Finally, “skalarproduct” stores the
scalar-product ji tt between two terms. Each time a
document is inserted, the “doc_term_ass” has to be
updated. After this the unnormed document-vector length
has to be calculated once and stored for performance
reasons in table “document” using the following view as
data source:

CREATE VIEW doc_length AS
 SELECT dta1.document,
 sqrt(sum(dta1.quantity *
 dta2.quantity * value))
 AS length
 FROM doc_term_ass dta1,
 doc_term_ass dta2, skalarproduct s
 WHERE dta1.document = dta2.document
 AND dta1.term = s.term1
 AND dta2.term = s.term2
 GROUP BY dta1.document;

TOPIC-BASED VECTOR SPACE MODEL 11

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

Two4 views should be created in order to calculate the
similarity between documents:

CREATE VIEW unnorm_doc_sim AS
 SELECT dta1.document AS document1,
 dta2.document AS document2,
 sum(value * dta1.quantity *
 dta2.quantity)
 AS unnorm_sim
 FROM doc_term_ass dta1,
 doc_term_ass dta2, skalarproduct s
 WHERE s.term1 = dta1.term
 AND s.term2 = dta2.term
 GROUP BY dta1.document, dta2.document;

CREATE VIEW doc_sim AS
 SELECT uds.document1, uds.document2,
 uds.unnorm_sim / n1.length /
 n2.length AS sim
 FROM unnorm_doc_sim uds,
 document n1, document n2
 WHERE uds.document1 = n1.id
 AND uds.document2 = n2.id;

The first view calculates the unnormed similarity between
two documents:

∑∑
= =

n

i

n

j
jiljki ttee

1 1

The second view calculates the norming factor using the
previously stored unnormed document-vector lengths.
This results in a virtual table which “holds” the similarity
for all combinations of documents:

lk dd ∑∑
= =⋅

=
n

i

n

j
jiljki

lk

ttee
1 1

1
δδ

The following statement has to be executed in order to
gain the similarity between document 5 and document 7:

SELECT * FROM doc_sim
WHERE document1=5 AND document2=7;

The following statement has to be executed in order to
compare document 5 with all other documents (including
reverse ordering by similarity):

SELECT * FROM dok_sim
WHERE nachricht1=5
ORDER BY sim DESC;

3.2 Performance

We implemented the TVSM on a PostgreSQL5 version
7.2 relational database. For a better performance, only
entries with a scalar-product larger than the scalar-
threshold 0.5 are stored in the “scalarproduct” table (this
is equivalent to set all scalar-products lesser than the
scalar-threshold to value zero). For our tests, we used
7184 news documents from the German Heise-Ticker6

Website. 96887 terms have been extracted from these
documents and have been stored in the “term” table. From

4 We are using two views in order to avoid nested select statements.
5 http://www.postgresql.org
6 http://www.heise.de/newsticker

this data-basis term-weights and -angles have been
derived as already described in section 2.5 (with the
restriction of the scalar-threshold). Table “scalarproduct”
contained 97509 entries. The calculation of the similarity
between a general document (having 164 different terms)
and all 7184 documents (including reverse ordering by
similarity) needed approximately five seconds on our
generic PC (Athlon XP 1600+ processor with 768 MByte
Ram and FreeBSD operating system). First performance
tests showed that the calculation speed highly depends on
the number of entries in table “scalarpoduct” and that it
only depends very low on the number of terms or
documents. This means the scalar-threshold is a good
variable to adjust the calculation speed versus the quality
of similarity-calculation.

4. Comparison with other vector-based
approaches

Both, the Vector Space Model (VSM) [Salton 1968;
Baezea-Yates 1999, pp. 27-30] and the TVSM assign a
document-vector to each document. In contrast to the
TVSM the VSM assumes that all terms are independent
(orthogonal) to each other. This leads to a relatively high
performance. The assumption of orthogonal terms is
incorrect regarding natural languages which causes
problems with synonyms or strong related terms. In order
to reduce these problems messages are usually passed
through a stopword-list, stemming- and thesaurus-
algorithms before they are forwarded to the VSM. This
abrogates the assumption of term independence only in
parts, because two terms can simply be treated as
equivalent or as not equivalent. Similarity levels between
these two extremes are not possible. From the theoretical
point of view the TVSM has the advantage of not
assuming independence for terms which allows a full
integration of stopword-list, stemming and thesaurus into
the model. Similarity between terms can be gradually
defined from “not equivalent” (term-angle: 90°) to
“equivalent” (term-angle: 0°).

The Generalized Vector Space Model (GVSM) [Wong
1987; Beaza-Yates 1999, pp. 41-44] assigns a document-
vector to each document without the assumption of
orthogonal terms. In contrast to the TVSM the GVSM
allows no flexibility regarding the computation of term-
angles: in the GVSM term-angles are based on the com-
putation of co-occurrence of terms. Because of this limi-
tation messages have to be pre-processed in a similar way
like for the VSM: Messages are passed through a
stopword-list and stemming-algorithms before they are
forwarded to the GVSM. In contrast to the GVSM the
TVSM specifies only ideal properties of term-angles
(refer section 2.4). Therefore the TVSM allows more
flexibility regarding the calculation of term-angles. Term-
angles can be computed using different statistical methods

12 BUSINESS INFORMATION SYSTEMS – BIS 2003

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

like co-occurrence or correlation (refer section 2.5).
Further the TVSM allows the deduction of term-angles
from explicit information about the semantic coherence of
words (e. g. from semantic networks or ontology).

5. Conclusion

This paper presents a new approach (TVSM) to
compare documents regarding their content. This
approach has the following advantages: From the
theoretical point of view, the TVSM is an open approach
which enables the integration of several natural language
processing algorithms as stopword-list, stemming and
thesaurus into one model. This facilitates the possibility
of exploration of dependencies between these algorithms
and provides a potential to optimize natural language
processing models in general.

From the practical point of view, the TVSM enables
complete calculation of document-similarities within a
relational-database by using plain SQL. Therefore reliable
processing of huge amounts of data is supported by using
database-integrated optimization algorithms for accessing
and processing the data.

6. Bibliography

[Beaza-Yates 1999] R. Beaza-Yates, B. Ribeiro-Neto:
Modern Information Retrival. ACM Press, New York, 1999.

[Binkley 1991] J. Binkley, L. Young: Rama: An Architecture for
Internet Information Filtering. ftp://ftp.cs.pdx.edu/pub/faculty/
jrb/rama/rama_kl.ps, download: 2002-06-10.

[Haneke 2001] E. Haneke: NewsSIEVE Ein selbstadaptiver
Filter für textuelle Informationen. 2001, ftp://ftp3.informatik.
uni-bonn.de/pub/paper/tr/IAI-TR-2001-1.pdf.gz, download:
2002-06-11.

[ISO 1992] International Standards Organization: ISO/IEC
9075. 1992.

[Kuropka 2001] D. Kuropka, T. Serries: ”Personal Information
Agent”, Informatik 2001 Conference Proceedings,
books@ocg.at, 2001, pp. 940-946.

[Salton 1968] G. Salton, M. Lesk: “Computer evaluation of
indexing and text processing”, Journal of the ACM, 15(1), pp.
8-36, 1968.

[Smeaton 1996] A. Smeaton: “Lessons learned from developing
and delivering the BORGES information filtering tool”,
Ariadne, 1996, http://www.ariadne.ac.uk/issue6/borges, down-
load: 2002-06-14.

[Wong 1987] S. Wong, W. Ziarko, V. Raghavan, P. Wong:
“On Modeling of Information Retrival Concepts in Vector
Spaces”, ACM Transactions on Database Systems (TODS),
Volume 12, Issue 2, June 1987, pp. 299-321.

[Yan 2000] T. Yan, H. Garcia-Molina: “The SIFT Information
Dissemination System”, ACM TODS, 2000.

[Yang 1999] Y. Yang, X. Liu: “A re-examination of text
categorization methods”, Proceedings of the 22nd Annual
ACM SIGIR Conference on Research and Development in
Information Retrieval, Berkley, 1999, pp. 42-49.

